站内搜索:   
综合新闻
科研成果
科研项目
研究进展
学科热点
通知公告
科普专栏
 
 
 
    科研信息  
 
Stable isotopes in global lakes integrate catchment and climatic controls on evaporation
新闻类别:科研信息   发布时间:2022-02-22
 

作者:Vystavna, Yuliya; Harjung, Astrid; Monteiro, Lucilena R.;

Global warming is considered a major threat to Earth's lakes water budgets and quality. However, flow regulation, over-exploitation, lack of hydrological data, and disparate evaluation methods hamper comparative global estimates of lake vulnerability to evaporation. We have analyzed the stable isotope composition of 1257 global lakes and we find that most lakes depend on precipitation and groundwater recharge subsequently altered by catchment and lake evaporation processes. Isotope mass-balance modeling shows that ca. 20% of water inflow in global lakes is lost through evaporation and ca. 10% of lakes in arid and temperate zones experience extreme evaporative losses >40 % of the total inflow. Precipitation amount, limnicity, wind speed, relative humidity, and solar radiation are predominant controls on lake isotope composition and evaporation, regardless of the climatic zone. The promotion of systematic global isotopic monitoring of Earth's lakes provides a direct and comparative approach to detect the impacts of climatic and catchment-scale changes on water-balance and evaporation trends. An isotope synthesis of 1257 global lakes revealed on average 20% of inflow is lost to evaporation, but 10% of Earth's lakes show extreme evaporative losses. Stable water isotope monitoring is an effective way to detect comparative climatic and catchment-scale impacts on lake water-balance budgets.

 (来源:NATURE COMMUNICATIONS 卷:12 期:出版年:2021 DOI: 10.1038/s41467-021-27569-x)

 

附件
 
   webmaster@skllse.ac.cn 版权所有 © 2009 中国科学院南京地理与湖泊研究所 湖泊与环境国家重点实验室
地址:南京市玄武区北京东路73号 邮编:210008
电话:025-86882189 传真:025-86882189